Well-posedness for lexicographic vector quasiequilibrium problems with lexicographic equilibrium constraints
نویسندگان
چکیده
منابع مشابه
Well-posedness for Lexicographic Vector Equilibrium Problems
We consider lexicographic vector equilibrium problems in metric spaces. Sufficient conditions for a family of such problems to be (uniquely) well-posed at the reference point are established. As an application, we derive several results on well-posedness for a class of variational inequalities.
متن کاملDuality for vector equilibrium problems with constraints
In the paper, we study duality for vector equilibrium problems using a concept of generalized convexity in dealing with the quasi-relative interior. Then, their applications to optimality conditions for quasi-relative efficient solutions are obtained. Our results are extensions of several existing ones in the literature when the ordering cones in both the objective space and the constr...
متن کاملLexicographic and sequential equilibrium problems
The aim of this work is to analyze lexicographic equilibrium problems on a topological Hausdorff vector space X, and their relationship with some other vector equilibrium problems. Existence results for the tangled lexicographic problem are proved via the study of a related sequential problem. This approach was already followed by the same authors in the case of variational inequalities.
متن کاملLevitin-Polyak Well-Posedness for Equilibrium Problems with Functional Constraints
We generalize the notions of Levitin-Polyak well-posedness to an equilibrium problem with both abstract and functional constraints. We introduce several types of generalized Levitin-Polyak well-posedness. Some metric characterizations and sufficient conditions for these types of wellposedness are obtained. Some relations among these types of well-posedness are also established under some suitab...
متن کاملWell-posedness for Parametric Vector Equilibrium Problems with Applications
In this paper, we study the parametric well-posedness for vector equilibrium problems and propose a generalized well-posed concept for equilibrium problems with equilibrium constraints (EPEC in short) in topological vector spaces setting. We show that under suitable conditions, the well-posedness defined by approximating solution nets is equivalent to the upper semicontinuity of the solution ma...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2015
ISSN: 1029-242X
DOI: 10.1186/s13660-015-0669-5